SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road, PUTTUR-517 583 OUESTION BANK

Subject with Code: Nuclear Engineering (20ME3112) Year & Sem : I Year &I-Sem

Course & Branch: M. Tech(TE) Regulation: R20

Basics of nuclear fission and power from fission						
1	а	Explain the nuclear fission process with a neat sketch	L2	CO1	6M	
	b	Distinguish between nuclear fission and fusion	L4	CO1	6M	
2		What is the need for enrichment of uranium? Describe the most	L1	CO1	12M	
		efficient and elaborated methods suited to produce highly enriched U ^{235.}				
3	а	What is chain reaction? What is the difference between controlled and uncontrolled chain reaction?	L1	CO1	6M	
	b	Which types of neutrons are most suitable for chain reaction? Why.	L1	CO1	6M	
4	а	Explain the process of breeding with an example?	L2	CO1	6M	
	b	How to convert nuclear fuels into fertile materials?	L1	CO1	6M	
5	а	Define the term radioactivity. Explain it with an example	L1	CO1	6M	
	b	Illustrate the importance of half-life period of radioactive material in nuclear power generation?	L2	CO1	6M	
6		Explicate the following terms in detail	L2	CO1	12M	
		(i) Breeding ratio (ii) Fertile Material (iii) Chain reaction				
7		Name different methods of power producing process in Nuclear Power	L1	CO1	12M	
		Plant and explain them in detail?				
8	а	How to control the nuclear power generation?	L1	CO1	6M	
	b	Explain in brief how uranium material is produced from thorium?.	L2	CO1	6M	
9	a	Amount of energy released in fusion higher than fission. Justify	L5	CO1	6M	
	b	Asses the process of conversion of fissile materials into fertile materials	L5	CO1	6M	
10	a	Write short notes on neutron scattering and neutron absorption?	L2	CO1	6M	
L	ı	1		1		

<u>UNIT-I</u>

Basics of nuclear fission and power from fission

R20

R20

	b	Discuss radioactive decay chain	L6	CO1	6M
		UNIT-II			
		Neutron transport and diffusion			
1	а	Write the salient equations of Neutron diffusion theory	L2	CO2	6M
	b	The slow Neutrons are more useful rather than faster one in power	L5	CO2	6M
		generation. Justify			
2	а	Elastic Collisions are the important source for the nuclear power. Justify	L5	CO2	6M
	b	What do you know about Neutron transport? Explain	L2	CO2	6M
3		Mention the importance of Fick's law in diffusion of Neutron	L2	CO2	12M
4	a	Mention various parameters considered in neutron transport calculations	L2	CO2	6M
	b	What do you mean by the following	L1	CO2	6M
		(i) Elastic Scattering (ii) Inelastic Scattering (iii) Capture			
		(iv) Fission			
5		Discuss the importance of diffusion theory of approximation	L6	CO2	12M
6	а	How do you make the neutrons slow Mention the importance of Fick's law in diffusion of Neutron	L1	CO2	6M
	b	Explain about Elastic Collision.	L2	CO2	6M
7		Mention the various assumptions and boundary conditions used for the	L2	CO2	12M
		derivation of diffusion equation			
8		Write an equation for Neutron transport and explain the terms in it	L2	CO2	12M
9	а	What do you understand by diffusion theory of approximation	L1	CO2	6M
	b	Distinguish between Elastic and inelastic collisions of atoms	L2	CO2	6M
10	a	Explain the diffusion equations for point source and planer source	L2	CO2	6M
	b	Why Fick's Law is more important in nuclear power generation	L1	CO2	6M
		<u>UNIT-III</u> Multi group, Multi region diffusion equation, concept of			
1		criticality	т 1		
1	а	Name and Explain various critical parameters in thermal reactors	L1	CO3	6M

	b	What is the difference between Artificial Radioactivity and Natural Radioactivity	L1	CO3	6M
2		How do you find the solution for multi group diffusion equations	L1	CO3	12M
3		Mention the difference between multi group differential equations for	L2	CO3	12M
		single and multi regions			
4	а	Find solution for diffusion equations for a particular region	L5	CO3	6M
	b	Why thermal reactors are more crucial in power generation	L1	CO3	6M
5		Classify the reactors used in nuclear power plant and explain Boiling water Reactor with a neat sketch	L2	CO3	12M
6	a	Describe the working of PWR with a neat sketch	L2	CO3	6M
	b	What are the merits and demerits of PWR	L1	CO3	6M
7	a	Name various parts of a Reactor and also mention the uses of each part	L1	CO3	6M
	b	How BWR differs from PWR	L1	CO3	6M
8	а	Mention the special features of Fast breeder reactor	L2	CO3	6M
	b	With a neat sketch explain the working of Sodium-Graphite reactor	L2	CO3	6M
9		Describe the working of Gas Cooled reactor with a neat sketch and also mention its merits and demerits	L2	CO3	12M
10	а	Explain the working of reactor mostly used in India with a neat sketch	L2	CO3	6M
	b	What are the various features of Homogeneous reactor which makes it special	L1	CO3	6M
		<u>UNIT-IV</u>			6M
1		Reactor kinetics and control	15	CO4	6M
1	а	Radioactive materials are more dangerous to human beings. Justify	L5	CO4	6M
	b	What is the future of nuclear power?	L1	CO4	6M
2		Mention the significance of point kinematic equations in the nuclear power	L2	CO4	12M
3		How do you dispose radioactive materials without damaging environment	L1	CO4	12M
4		Write an equation for simple point Kinematics and mention the importance of each term in that.	L2	CO4	12M

R20

5		Define the following terms	L1	CO4	12M
	l	(i) In hour unit of reactivity (ii) Doller Unit of Reactivity			
6	1	Write the factors which affects the reactivity	L2	CO4	12M
7	1	Mention the importance of point kinematics and the factors which affect	L2	CO4	12M
	I	them	1		
8		What is the importance of Radiation Hazards and shielding	L1	CO4	12M
9	a	What do you understand by Fission Product poison and reactivity	L1	CO4	6M
	1	coefficients	1		
	b	List out the safety measures for the nuclear power plants	L1	CO4	6M
10		Discuss the factors which must be considered while selecting a site for a	L2	CO4	12M
	1 _	nuclear power plant			
		UNIT-V Heat removal from reactor core			
1		How the temperature is distributed in reactor core	L1	CO5	12M
2	1	What is the need of radiation protection and also mention its standards	L1	CO5	12M
3		Discuss about the critical heat flux in reactor core	L2	CO5	12M
4		Mention the various safety precautions of Reactor core in nuclear power	L2	CO5	12M
	1	plant	1		1
5		Write equations for temperature distribution in reactor core	L2	CO5	12M
6	1	Write various equations and its solutions for heat transfer in reactor core	L2	CO5	12M
7		Heat flux plays very important role in reactor core. Justify	L5	CO5	12M
8		What are various units used for reactivity exposure and explain them in	L1	CO5	12M
	1	detail	1		1
9		Why reactor safety is important and mention its safety precautions	L1	CO5	12M
10		How reactors are useful in defense. Explain	L1	CO5	12M
				<i>_</i>	

Prepared By: Dr. S.SUNIL KUMAR REDDY